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Abstract
A general approach is presented for calculating the dynamic conductance of
coupled quantum dot systems. To consider the long-range Coulomb interaction,
we introduce the capacitances between the leads and dots, gate electrodes
and dots, and dots and dots. The displacement currents are also taken into
account. Our results fulfil charge and current conservation requirements, as
well as current and charge response invariance under an overall potential shift.
We apply our approach to a one-dimensional quantum dot array by use of
the non-equilibrium Green function techniques. The numerical results are
presented for a three-quantum-dot system. Three-peak resonant structure of
the alternating-current conductance is observed at low temperature. The effect
of the capacitance on the frequency-dependent conductance is obvious, but less
so at low frequency. The low-frequency conductance shows either capacitive
or inductive behaviour depending on the chemical potential of the electron
reservoirs, but sufficiently large capacitances may change this situation.

1. Introduction

Alternating-current transport properties of mesoscopic conductor systems have attracted much
research attention, both experimental [1–3] and theoretical [4–18]. In recent years, many
studies of quantum dot (QD) systems consisting of coupled dots have appeared in the
literature [8–16, 19–25]. Büttiker et al [9–11] have published much work discussing the
ac response of mesoscopic systems. In [9], using discrete-potential models, they studied the
dynamic conductance of QD systems with a number of dots and leads (contacts), in which
it was assumed that no tunnelling occurs between the dots. However, in most situations, the
systems involved tunnel couplings between the QDs. In this paper, we extend the idea of
Büttiker et al [9] to systems with inter-dot tunnelling, and develop a general approach for
calculating the frequency-dependent conductance of the coupled QD systems. As an example,
we apply our approach to a one-dimensional (1D) coupled QD array, and, with the help of the
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non-equilibrium Green function techniques, present a calculation of the frequency-dependent
conductance.

2. General theory for the response of coupled QD systems

For general purposes, we first consider a system of N tunnel-coupled QDs, which are connected
with a number of contacts (electron reservoirs) via tunnel coupling. The gate electrodes are
included in the system as electron reservoirs, which have no tunnelling connections to the
QDs, but are coupled capacitively with the QDs. Alternating fields are applied to the electron
reservoirs in addition to dc voltages. This system can be described by the following model
Hamiltonian:

H =
∑

i

∑
αi ,k

εksαi
(t)c

†
ksαi

cksαi
+

∑
i,n

εi,n(t)d
†
indin +

∑
n,m,i<j

(Vim,jnd
†
imdjn + h.c.)

+
∑

i

∑
k,n,αi

(Vksαi ,nc
†
ksαi

din + h.c.) (1)

where c
†
ksαi

(cksαi
) is the creation (annihilation) operator for an electron with momentum k in

channel s of reservoir αi connected to dot i, d
†
in (din) is the electron creation (annihilation)

operator for the nth level in dot i, Vim,jn is the tunnelling coupling between the two dots,
and Vksαi ,n is the tunnelling coupling between nth level in dot i and reservoir αi . Applying a
time-dependent potential Vαi

(t) to the contact αi causes the electron energy in the contact to
vary as εksαi

(t) = εksαi
+ eVαi

(t), and this ac potential results in a time-dependent energy in
the dots: εin(t) = ε0

in + eVi(t), where Vi(t) is the so-called internal potential. In this model
we do not introduce the many-body terms describing interaction between electrons; instead
we describe the interaction by the effective potential seen by the interacting electrons. This is
in fact a mean-field picture. In this model, the ac tunnelling current from reservoir αi into dot
i is given by

I Tun
αi

(t) = e

h̄

∑
ks∈αi ,n

[iVksαi ,n〈c†
ksαi

din(t)〉 + c.c.]. (2)

According to linear-response theory, for Hamiltonian (1) we obtain the following Kubo-like
formula for the ac current response to small ac voltages and internal potentials:

δI Tun
αi

(t) =
∫

σαi,I (t − t ′)VI (t ′) dt ′ (3)

where σαi,I (t − t ′) = −iθ(t − t ′)〈[Îαi
(t), eN̂I (t ′)]〉0 is the tunnelling current operator, and

Îαi
(t) = (e/h̄)

∑
ks∈αi ,n

[iVks,nc
†
ksαi

(t)din(t) + h.c.]. Here 〈· · ·〉0 represents the mean value for

the system without time-dependent perturbation. N̂I is the number operator for the electrons
in the contacts or QDs, and the label I = {αi, i}. The frequency-dependent current is then
obtained from equation (3)

δI Tun
αi

(ω) =
∑

I

σ Tun
αi ,I

(ω)VI (ω) (4)

where the tunnelling conductance σ Tun
αi ,I

(ω) = ∫
σαi,I (t)e−iωt dt is the Fourier transform of the

correlation function σαi,I (t). It is worth pointing out that the expressions for the current (2) and
the linear response (3) and (4) are general, and valid for models including interaction terms in
the contacts and dots.

Our next job is to determine the internal potential Vi(t). For this purpose, following
Büttiker et al [9] we consider all conducting units (contacts and QDs) which interact via long-
range Coulomb forces, and assume that all electric field lines from one of the QDs and contacts
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terminates at the nearby QDs and contacts. Due to the tunnelling between them, charge piles
up in contacts and QDs, and the pile-up charge in one dot or contact induces counterbalancing
charge on the other dots or contacts. We consider the long-range Coulomb interaction by
introducing formal geometrical capacitances CIJ that relate the total charges QI in the QDs
(i) or contacts (αi) to the potentials (Vα and Vi):

Qi =
∑

j

Cij Vαj
+

∑
j

∑
αj

Ciαj
Vαj

(5)

and

Qαi
=

∑
j

Cαi j
V

j
+

∑
j

∑
αj

Cαiαj
Vαj

(6)

with CIJ = CJ I (I = i, αi and J = j, αj ) and
∑

J CIJ = 0. On the other hand, the charges
Qi in the QDs can be calculated via

∑
n e〈din

†(t)din(t)〉 by making use of Keldysh Green
function techniques. Similar to the current response δI Tun

αi
, we have the charge response in the

QDs

δQi(ω) =
∑

I

e2Ni,I (ω)VI (ω) (7)

where Ni,I (t) = −iθ(t)〈[N̂i(t), N̂I (0)]〉0. From equations (5) and (7), the internal potentials
are obtained:

δVi(ω) =
∑

k

(M−1)ik(ω)
∑

j

∑
αj

(e2Nkαj
(ω) − Ckαj

)Vαj
(ω). (8)

Consequently, we obtain the following total ac response

δIαi
(ω) = δI Tun

αi
(ω) − iωδQαi

(ω) =
∑

j

∑
αj

σαiαj
(ω)Vαj

(ω) (9)

and the true conductance

σαiαj
(ω) = σ Tun

αiαj
(ω) +

∑
k,l

σ Tun
αik

(ω)(M−1)kl(ω)(e2Nlαj
(ω) − Clαj

)

− iω

[
Cαiαj

+
∑
k,l

Cαik(M−1)kl(ω)(e2Nlαj
(ω) − Clαj

)

]
(10)

where M(ω) is the following matrix:

Mij (ω) = Cij − e2Nij (ω). (11)

We show below that the conductance given by equation (10) satisfies overall current
conservation: ∑

i

∑
αi

σαiαj
(ω) = 0 (12)

and gauge invariance under an overall potential shift:∑
j

∑
αj

σαiαj
(ω) = 0. (13)

From equations (1) and (2), one can verify the charge conservation law [4, 18]∑
i

eṄi(t) =
∑

i

∑
αi

I Tun
αi

(t) or −
∑

i

iωeδNi(ω) =
∑

αi

δI Tun
αi

(ω). (14)

Combining equations (5)–(9) and (14) with
∑

I CIJ = 0, one finds that the conductance
equation (10) fulfils the overall current conservation requirement (12). On the other hand,
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we notice that the current response of the system is invariant under the following canonical
transformation [6]:

H̄ = U−1HU − iU−1 ∂

∂t
U (15)

with U = exp{i ∫ t

−∞ dt̄ #(t̄)[
∑

ks∈αi
c

†
ksαi

cksαi
+

∑
i,n d

†
indin]}, where #(t) is an arbitrary

function of t . This transformation performs an overall potential shift in Hamiltonian (1),
i.e., εksαi

(t) → εksαi
(t) − #(t) and εi,n(t) → εi,n(t) − #(t). Therefore, the current response

equation (2) fulfils invariance under an overall potential shift, and hence is a functional of
εksαi

(t) − #(t) and εi,n(t) − #(t):

I Tun
αi

(t) = I Tun
αi

({εksαi
(t), εi,n(t)}, t) = I Tun

αi
({εksαi

(t) − #(t), εi,n(t) − #(t)}, t) (16)

for any #(t). Property (12) is therefore obtained from the combination of (16) and
∑

J CIJ = 0
with the other related equations.

3. Formulae for the conductance of the 1D QD array

Equation (3) is valid for general systems, even ones including interaction of electrons in the
contacts. However, for our case, where there is no interaction term in the Hamiltonian, the ac
tunnelling current flowing from the αi-reservoir into dot i can be calculated using the Keldysh
Green functions

I Tun
αi

(t) = e

h̄
Tr

∫
dt1 {Gr

i (t, t1)Σ<
αi

(t1, t) + G<
i (t, t1)Σa

αi
(t1, t)

− Σ<
αi

(t, t1)Ga
i (t1, t) − Σr

αi
(t, t1)G<

i (t1, t)} (17)

where

[G<
i (t)]mn = i〈d†

in(t ′)dim(t)〉 (18)

[Gr
i (t)]mn = −iθ(t)〈{dim(t), d

†
in(t ′)}〉 (19)

and the tunnelling self-energies are related to the free-particle Green functions (gr,a,<
kαi

) in the
electron reservoirs and the tunnel couplings (Vksαi ,n) between the contacts and dots:

[Σr,a,<
αi

(t, t ′)]mn = V ∗
αim

Vαin

∑
ks∈αi

g
r,a,<
ksαi

(t, t ′) (20)

and

g
r,a
ksαi

(t, t ′) = ∓iθ
(±t ∓ t ′) exp

[
−i

∫ t

t ′
dt1 εksαi

(t1)

]

g<
ksαi

(t, t ′) = if (εksαl
) exp

[
−i

∫ t

t ′
dt1 εksαl

(t1)

] (21)

where f (ε) is the Fermi distribution function. The ac current response can then be obtained by
linearizing the Green functions in equation (17) with respect to the time-dependent potentials

δI Tun
αi

(ω) = e

h̄
Tr

∫
dE

2π
iΓαi

(E)

{ [
fαi

(E) − fαi
(E + ω)

ω

]

× [
Gr

i (E + ω) − (Gr
i (E))∗] eVαi

(ω)

+ fαi
(E)[δGr

i (E + ω, E) − (δGr
i (E − ω, E))∗] + δG<

i (E + ω, E)

}
(22)

where δG are the linearized Green functions and (Γαi
)mn = ∑

ks∈αi
Vksαi ,mV ∗

ksαi ,n
δ(E − εksαl

)

is the resonant width for contact αi .
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Up to here our discussion has been general, and valid for arbitrary tunnel-coupled QD
systems. As an example, we next consider a 1D tunnel-coupled QD array with two ends
connected to two leads (L and R) via tunnelling. The dots and contacts are in series, coupled
capacitively, and the dots in the array are also coupled capacitively to a common gate electrode
with an ac voltage Vg(t). For simplicity, we use the wide-band approximation for the electronic
structure of the contacts [4]. We therefore obtain the linearized Green functions

δGr
i (E + ω, E) =

∑
i

Ḡr
ij (E + ω, E)(eVj (ω)) (23)

and

δG<
i (E + ω, E) =

∑
j

{Ḡ<
ij (E + ω, E) − [Ḡ<

ij (E, E + ω)]∗}eVj (ω)

+
∑

α=L,R

{Ḡ<
iα(E + ω, E) − [Ḡ<

iα(E, E + ω)]∗}eVα(ω). (24)

Equations (23) and (24) and the components Ḡr,<
ij (α) in them can be obtained by linearizing the

following Dyson equations of path Green functions:

Gi(τ, τ ′) = gi(τ, τ ′) +
∫

c

dτ1 dτ2 gi(τ, τ1).i(τ1, τ2)Gi(τ2, τ ′) (25)

.i(τ1, τ2) = |Vi−1 i |2 G0
L,i−1(τ1, τ2) + |Vi i+1|2 G0

R,i+1(τ1, τ2) (26)

where

G0
L,i(τ, τ ′) = gi(τ, τ ′) + |Vi−1 i |2

∫
c

dτ1 dτ2 gi(τ, τ1)G0
L,i−1(τ1, τ2)G0

L,i(τ2, τ ′)

for i = 2, 3, . . . , N (27)

G0
L,1(τ, τ ′) = g1(τ, τ ′) +

∫
c

dτ1 dτ2 g1(τ, τ1).L(τ1, τ2)G0
L,1(τ2, τ ′) (28)

G0
R,i(τ, τ ′) = gi(τ, τ ′) + |Vi i+1|2

∫
c

dτ1 dτ2 gi(τ, τ1)G0
R,i+1(τ1, τ2)G0

R,i(τ2, τ ′)

for i = 1, 2, . . . , N − 1 (29)

and

G0
R,N (τ, τ ′) = g1(τ, τ ′) +

∫
c

dτ1 dτ2 g1(τ, τ1).R(τ1, τ2)G0
R,N (τ2, τ ′). (30)

Using equations (22)–(24) and related equations in the last section, we obtain the
conductance of the 1D QD array:

σαβ(ω) = σ Tun
αβ (ω) +

∑
ij

σ Tun
αi (ω)(M−1)ij (ω)(e2Njβ(ω) − Cjβ)

− iωCα

[
δαβ −

∑
j

(M−1)iαj (ω)(e2Njβ(ω) − Cjβ)

]
(31)

with

σ Tun
αj (ω) = i

e2

h̄
Tr

∫
dE

2π
0α{fα(E)Ḡr

iαj (E + ω, E) + Ḡ<
iαj (E + ω, E)} + c.c.(ω −→ −ω)

(32)

σ Tun
αβ (ω) = i

e

h̄
Tr

∫
dE

2π
0α

{[
fα(E) − fα(E + ω)

ω

]
Gr

iα
(E + ω)δαβ + Ḡ<

iαβ(E + ω, E)

}

+ c.c.(ω −→ −ω) (33)

and
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Nij (ω) = −i
∫

dE1

2π
Tr{Ḡ<

ij (E + ω, E)} + c.c.(ω −→ −ω) (34)

Niα(ω) = −i
∫

dE1

2π
Tr{Ḡ<

iα(E + ω, E)} + c.c.(ω −→ −ω) (35)

where α, β = L, R, and iα = 1 or N for α = L or R, respectively. The symbol c.c.(ω → −ω)

means that we change ω to −ω in the first terms of the equations and then take the complex
conjugate. Here σαβ(ω) is defined according to δIα(ω) = ∑

β σαβ(ω)[Vβ(ω) − Vg(ω)]. In
equation (31) we have used the nearest-neighbour capacitance approximation

Cij =




Ci−1 + Ci + C(i)
g j = i

−Ci−1 j = i − 1

−Ci j = i + 1

0 otherwise

(36)

with C0 = CL and CN = CR , and

Ciα = −CLδi1δLα − CRδiN δRα (37)

where C
(i)
g is the capacitance between dot i and gate electrode.

4. Numerical results for a three-QD system

In this section we present the numerical results for a 1D array of three QDs at equilibrium
(µL = µR) based on equations (31)–(35). In our numerical calculations we assume that
C1 = C2 = C3 = Cd, C(i)

g = Cg and CL = CR , and that there is only one channel in the
contacts and one energy level (all equal) in every QD, i.e., ε0

1 = ε0
2 = ε0

3 = 0. In addition,
the inter-dot tunnel coupling is assumed as Vi,i+1 = V . Since different elements of the
conductance have similar properties, we only present the results for the diagonal conductance
element σLL(ω) for discussion. In the wide-band limit, the resonant width 0α (α ∈ L, R) are
energy-independent constants. Hereafter, all energies are measured in units of 0 = 0L + 0R ,
frequency in units of 0/h̄, and capacitance in units of e2/ 0.

First we consider the perfect-screening case [9] (CL = CR = Cd = Cg = 0). In figure 1
we plot the low-temperature (T = 0.01) ac conductance of the three-dot system against the
frequency ω for different chemical potentials µ. The inter-dot tunnel coupling is taken as
V = 2. In figure 1(a) we present the real part of the diagonal admittance Re[σLL(ω)] as a
function of ω for µ = 0, 2 and

√
2V . The ac conductance at ω = 0 should be equal to the

dc conductance. We see that for µ = 2 the curve of Re[σLL(ω)] increases as ω increases for
small frequency, and exhibits three peaks at ω ∼ 1, 2.2, and 4.5. However, for the other two
curves Re[σLL(ω)] is very large at ω = 0, in contrast to the curve for µ = 2, and decreases
rapidly as ω increases from zero frequency. For µ = √

2V and 0 the curves show two small
peaks and one peak at ω �= 0, respectively. This is not surprising; it is a result of the so-called
photon-assisted tunnelling that makes the conductance move toward the resonant value when
the Fermi level deviates from the resonant energy Er (here Er = 0, and ±√

2V ), but for µ = 0
and

√
2V the Fermi level is right at the resonant energy. According to the Fermi golden rule,

the two peaks of Re[σLL(ω)] should appear at the frequency ω = |Er − µ|. However, as we
pointed out in [18], the Fermi golden rule alone cannot explain the behaviour of the current
here, because the time-dependent voltages make the effective density of states dependent on
the frequency. In other words, in equation (22) the first term accords with the Fermi golden
rule, while the other terms do not—they reflect the change of the effective density of states in
the dots. So the position of the peaks would deviate from |Er − µ|, and delay to somewhat
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Figure 1. Plots of the real part (a) and imaginary part (b) of the conductance as functions of
frequency for a triple-QD system at low temperature (T = 0.01). ε0 = 0, V = 2. µ = 0 (solid
curve),

√
2V (dashed curve), and 2 (dotted curve). The conductance is measured in units of e2/h̄,

and all energies are in units of 0 = 0L + 0R where 0L = 0R = 0.5.
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Figure 2. Plots of the real part (a) and imaginary part (b) of the conductance against frequency
for a triple-QD system at high temperature (T = 1). ε0 = 0, V = 2. µ = 0 (solid curve),

√
2V

(dotted curve), 2 (dashed curve), and 5.8 (thick curve). The conductance is measured in units of
e2/h̄, all energies are in units of 0 = 0L + 0R where 0L = 0R , and the capacitance is in units of
e2/ 0.

higher frequency. For µ = 0 only one small peak of ω �= 0 appears; this is because in this case
|√2V − µ| = | − √

2V − µ|. We also present the imaginary parts of the diagonal admittance
Im[σLL(ω)] in figure 1(b). As expected, all curves show Im[σLL(0)] = 0. For the curve for
µ = 2, Im[σLL(ω)] goes negative from zero when the frequency increases from zero, so the
low-frequency conductance shows capacitive behaviour. When µ = Er , or the frequency is
sufficiently high, Im[σLL(ω)] is always positive, so the system shows inductive behaviour.
However, our calculation shows that for sufficiently large gate capacitance (Cg) and/or lead
contact capacitance (CL/R), Im[σLL(ω)] for low frequency may be negative even if µ = Er

(see figure 4). This is in agreement with the results of [9] for the single-QD system. For
Im[σLL(ω)] there are also three resonant frequencies, which are slightly less than |Er − µ| if
µ �= Er .

In figure 2 we present the results for the case of high temperature (T = 0) and various
chemical potentials. One can see that for µ = 0, 2, and

√
2V the peak structure disappears.
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Figure 3. Plots of the real part (a) and imaginary part (b) of the conductance against frequency
for a triple-QD system for µ = 2 at low temperature (T = 0.01), and in the presence of the
capacitances. The other parameters are the same as in figure 1. The conductance is measured in
units of e2/h̄, capacitance in units of e2/ 0, all energies in units of 0 = 0L + 0R where 0L = 0R ,
and capacitance in units of e2/ 0.

With increasing frequency, Re σLL(ω) decreases monotonically, and Im σLL(ω) is positive for
all frequencies. We conclude that for a given µ, when the temperature is sufficiently high the
conductance always shows inductive behaviour in the perfect-screening case. However, when
µ = 5.8, i.e., the chemical potential is further away from the resonant energy, the peak structure
appears again and the imaginary part of the low-frequency conductance is negative (see the
thick solid curves). On the other hand, our calculation shows that as in the low-temperature
case, a sufficiently large gate capacitance (Cg) and/or lead contact capacitance (CL/R) can give
rise to a negative Im[σLL(ω)] for small frequency, even if µ = Er .

Next we investigate the effect of the capacitance on the admittance of the three-dot system.
First we discuss the behaviour of the frequency-dependent conductance σαβ(ω) in the case of
small capacitances. In figure 3 we present the results at low temperature (T = 0.01), for
µ = 2 and different capacitances. For small frequency, all the capacitances have only minor
effects on the conductance, especially on the real parts. This is in accord with expectation,
because the capacitances have no effect on the dc conductance. With the increase of the
frequency the capacitance’s influence on the conductance becomes remarkable, and gives rise
to some additional peaks. The peaks caused by lead–dot capacitances are the largest. It is
interesting to note that the influences of different capacitances on the conductance cancel each
other partially for high frequency (see the thick solid curves). In figure 3(b), we see that with
the capacitance Cg and CL,R added, the low-frequency parts of the curves of Im σLL(ω) move
downward, keeping Im σLL(0) = 0. When the capacitances are added one by one, we find
that for low frequency, Im σLL(ω) moves down monotonically. If we use capacitance values
different from 0.01, our calculation shows that with increasing value of the capacitance, for
low frequency, Im σLL(ω) also moves down monotonically. Therefore we conclude that on
adding capacitances Cg and CL,R into the system, or increasing the values of the capacitances,
the effective capacitance Ceff ∼ −dIm σLL(0)/dω increases, but the inter-dot capacitance Cd

has almost no effect on low-frequency admittance.
In figure 4, we present the high-temperature conductances of the system with gate

capacitances for different chemical potentials. Comparing with figure 2, one can see that
the capacitance has a considerable effect on the frequency-dependent conductance. Due to
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Figure 5. Plots of the diagonal emittance ELL (a) and DLL (b) against chemical potential µ, for a
triple-QD system at low temperature (T = 0.01), and for various sets of capacitance parameters.
Here capacitance and ELL are measured in units of e2/ 0, DLL in units of h̄e2/ 02, and all energies
in units of 0 = 0L + 0R where 0L/ 0 = 0.9. The other parameters are the same as in figure 1.

the capacitance, the conductance curves show a three-peak structure in both the real and
imaginary parts. Our calculations for different 1D arrays also show that at high temperature
the number of peaks due to the capacitances is equal to that of QDs in the system. In the
three cases (corresponding to three different µ-values), for a given gate capacitance all of the
low-frequency conductances are negative, and hence show capacitive behaviour.

To deal with the properties of the low-frequency conductance more effectively, we expand
the conductance to second order in frequency:

σαβ(ω) = σαβ(0) − iωEαβ + ω2Dαβ + O(ω3) (38)

where Eαβ = −d Im[σαβ(0)]/dω is called the emittance, and Dαβ = 1
2 d2 Re[σαβ(0)]/dω2.

We plot the diagonal emittance element ELL(µ) and DLL(µ) for the three-QD system against
chemical potential µ in figure 5, for a ratio 0L/ 0 = 0.9, temperature T = 0.01, and
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different sets of capacitance parameters. In the case of perfect screening (solid curve) where
Cg = CL,R = Cd = 0, the low-temperature diagonal emittance is always positive (showing
a capacitive behaviour) when the chemical potential µ is far from the resonant energy, but
it is negative (showing an inductive behaviour) when the chemical potential is close to the
resonant energy. Inductive (negative-maximum) peaks appear at the resonant energies, and
two capacitive peaks appear near and on either side of each inductive peak. This accords with
the results obtained by Prêtre et al [9] for a one-QD system. DLL(µ) is shown in figure 5(b), and
has similar properties to ELL in the case of perfect screening. When temperature increases, both
the capacitive and inductive peaks are smoothed and the amplitude of E11 decreases rapidly,
and the capacitive peaks are pushed further away from resonant energy and the emittance is
negative in a larger region around the resonant energy (see figure 2(b)). To show the influence
of the capacitances on ELL(µ) and DLL(µ), in figure 5 we present the results for different
capacitances. The curves for CL = CR = 1 and Cg = Cd = 0 (see the key in the figure) show
that there is an increase in ELL and in DLL but more obviously in ELL. The curves for Cg = 1
and CL = CR = Cd = 0 (see the key) show that there is a large increase in both ELL and
DLL; in particular, when the chemical potential is close to the resonant energy the negative
peaks change to positive peaks. In the figures, we also present the results in the presence
of Cd, and find that the effect of inter-dot capacitance Cd is very interesting. When the lead
capacitance CL = CR = 0, the inter-dot capacitance has no obvious influence on either ELL

or DLL. However, when CL = CR �= 0, the inter-dot capacitance has a considerable effect on
ELL, making the whole ELL(µ) curves shift upward (see the dash–dotted curve and the thick
curve in figure 5(a)), but it does not have a similar effect on DLL (see figure 5(b)). In addition,
our calculation indicates that for 0L there are two critical values, 0

c,E
L and 0

c,D
L , below which

ELL(µ) and DLL(µ) at resonant energies are always negative, and the critical values depend
on the temperature.

5. Conclusions

In summary, we have presented a general approach for calculating the dynamical conductance
of the tunnel-coupled QD arrays. To consider the long-range Coulomb interaction, we have
introduced the geometrical capacitances between the leads and dots, gate electrode and dots,
and dots and dots. The displacement currents are also considered. The internal time-dependent
potentials in the dots are determined self-consistently. As a result, our results fulfil the charge
and current conservation requirement, as well as the current and charge invariance under an
overall potential shift. Applying our approach to a 1D QD array, we have given the formulae
for calculating the frequency-dependent conductance and charge response by using the non-
equilibrium Green function techniques. Numerical calculation of the ac conductance has
been carried out for a coupled three-QD system. The three-peak resonant structure of the ac
conductance is observed at low temperature, but it disappears at high temperature. We have
also studied the effect of the capacitance on the frequency-dependent conductance and found
that even small capacitances have a considerable effect on the frequency dependence of the
conductance, but they have a very small effect on the low-frequency conductance, especially
on the real parts. However, except for the inter-dot capacitance, the small capacitances have
a slight but non-negligible effect on the imaginary part of the low-frequency conductance
for the chemical potential far from resonant energy. For high frequency all the capacitances
have a considerable effect on the ac conductance. Finally, we calculated the low-frequency
conductance as a function of the chemical potential. The low-frequency conductance shows
either capacitive or inductive behaviour depending on the value of the chemical potential, but
sufficiently large capacitances can change this situation.
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